Identification of genetic variants contributing to late-onset Alzheimer’s disease risk and correlation with cerebral activity of patients

S Martins1,2, L Álvarez1,2,3, AM Lopes1,2, I Gomes1,2, V Oliveira1, P Sousa1, M Rodríguez2, C Pita2, M García2, J Pozza2, A Maturana-Candelas2, R Hornero2, A Taborda2, M Figueruelo5, M Arenas1,2,7, C Gómez2, N Pinto1,2,8

1Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal; 2Instituto de Investigación e Innovación en Saúde (3IS), Universidade do Porto, Portugal; 3GNCODNA S.A, Gosselies, Belgium; 4Associação Portuguesa de Famílias e Amigos de Doentes de Alzheimer, Delegação Norte, Portugal; 5Grupo de Ingeniería Biomédica, Universidad de Valladolid, Spain; 6Department of Biochemistry, Genetics and Immunology, University of Vigo, Spain; 7Centro de Matemática da Universidade do Porto, Portugal

Alzheimer's disease (AD), the most common form of dementia in the elderly population, is clinically defined by a slowly progressing memory loss, together with deficits in higher intellectual functions and cognitive abilities across different domains [1]. Differential diagnosis of dementia due to AD is, however, difficult to establish mainly in early stages of the disease. In an attempt to characterize more accurately neural dynamics in mild cognitive impairment, members of our team have previously shown a significant slowing of electroencephalography (EEG) activity and several significant alterations in spectral fluctuations of AD patients when compared to controls [2]. At the genetic level, mutations in three genes have been identified as responsible for early-onset AD: the gene encoding for the amyloid precursor protein peptide (APP) [3-5], and the presenilin 1 (PSEN1) and presenilin 2 (PSEN2) genes [6]. A more complex genetic etiology seems to underlie the most common form of the disease- late onset AD (LOAD) with the first symptoms appearing at an age >70 years old. To date, apolipoprotein E epsilon4 allele has been the major genetic risk factor described for its development [7], although approximately other 20 susceptibility genes with common variants have been suggested to contribute to LOAD risk.

Background

Objectives

- To identify novel LOAD candidate genes
- To characterize the population regarding coding and regulatory variants within genes at the previously identified LOAD loci
- To associate different cerebral activities to each of the four disease stages
- To correlate variants in candidate genes and disease progression (assessed by neuroimaging)

Subjects

LOAD patients:
- 100 from North Portugal
- 100 from the Spanish community of Castile and León

Strategy

- Characterization of neural dynamics in all patients and healthy controls: cerebral activity will be assessed by electroencephalography (EEG)
- Analysis of EEG patterns and disease severity based on the time of clinical evolution
- Oral sample collection through a non-invasive procedure: saliva samples collected in Origene OG500 tubes containing a solution to stabilize the DNA for long-term storage at room temperature, followed by DNA extraction
- Exome-wide analysis through SureSelect Human All Exon V6

References

Acknowledgements

This project has been approved by the Ethics Committee of the University of Porto (CEUP). This project has been supported by ‘European Commission’ and ‘European Regional Development Fund’. (Project “Institute for Research and Innovation in Health Sciences” (POCI-01-0145-FEDER-000274), “Coordination Programme INTERREG-VA Spain-Portugal POCTEP 2014-2020” and the COMPETE 2020-Operational Programme for Competitiveness and Internationalisation (POCI), Portugal 2020). Portuguese funds are supporting this work through FCT-Fundação para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia e Inovação in the framework of the project “Instituto for Research and Innovation in Health Sciences” (POCI-01-0145-FEDER-000274). SM, AM and NP are funded by FCT: IF/00050/2013, IF/02632/2014, and SRH/BDP/974/2013, respectively. MA is funded by the Grant RYC-2015-18241 from the Spanish Government.

We expect to find a non-invasive approach to assess early stages of cognitive decline, and improve the accuracy of LOAD diagnosis

Subjects

From both populations, we will analyze 25 patients from each of the 4 general stages of LOAD:
- Mild cognitive decline
- Initial stage
- Moderate decline
- Severe decline

Strategy

- Characterization of neural dynamics in all patients and healthy controls: cerebral activity will be assessed by electroencephalography (EEG)
- Analysis of EEG patterns and disease severity based on the time of clinical evolution

References

Acknowledgements

This project has been approved by the Ethics Committee of the University of Porto (CEUP). This project has been supported by ‘European Commission’ and ‘European Regional Development Fund’. (Project “Institute for Research and Innovation in Health Sciences” (POCI-01-0145-FEDER-000274), “Coordination Programme INTERREG-VA Spain-Portugal POCTEP 2014-2020” and the COMPETE 2020-Operational Programme for Competitiveness and Internationalisation (POCI), Portugal 2020). Portuguese funds are supporting this work through FCT-Fundação para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia e Inovação in the framework of the project “Instituto for Research and Innovation in Health Sciences” (POCI-01-0145-FEDER-000274). SM, AM and NP are funded by FCT: IF/00050/2013, IF/02632/2014, and SRH/BDP/974/2013, respectively. MA is funded by the Grant RYC-2015-18241 from the Spanish Government.